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components Generic Components Extraction Function

Description

Function to extract components from an object. If the object is of class ictest or ladle the user
can choose if all components are extracted or only those which were interesting under the null
hypothesis.
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Usage

components(x, ...)
## S3 method for class 'ictest'
components(x, which = "all", ...)
## S3 method for class 'ladle'
components(x, which = "all", ...)

Arguments

x an object which has a components method, like for example an ictest object.

which for an object of class ictest. If "all", then all components S in the ictest object
are extracted. If "k", then only the first k components are extracted, where the
value of k is taken from the ictest object. This is only meaningful if k was at
least 1.

... arguments passed on to other methods.

Value

a matrix with the components.

Author(s)

Klaus Nordhausen

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))

TestCov <- PCAasymp(X, k = 2)
head(components(TestCov))
head(components(TestCov, which = "k"))

covSIR Supervised Scatter Matrix as Used in Sliced Inverse Regression

Description

Sliced Inverse Regression (SIR) can be seen as special case of Supervised ICS (SICS) and this
function gives the supervised scatter matrix for SIR

Usage

covSIR(X, y, h = 10, ...)
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Arguments

X a numeric data matrix.

y a numeric response vector.

h the number of slices.

... arguments passed on to quantile.

Details

This supervised scatter matrix is usually used as the second scatter matrix in SICS to obtain a SIR
type supervised linear dimension reduction. For that purpose covSIR first divides the response y
into h slices using the corresponding quantiles as cut points. Then for each slice the mean vector of
X is computed and the resulting supervised scatter matrix consist of the covariance matrix of these
mean vectors.

The function might have problems if the sample size is too small.

Value

a supervised scatter matrix

Author(s)

Klaus Nordhausen

References

Liski, E., Nordhausen, K. and Oja, H. (2014), Supervised invariant coordinate selection, Statistics:
A Journal of Theoretical and Applied Statistics, 48, 711–731. <doi:10.1080/02331888.2013.800067>.

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.

See Also

ics

Examples

X <- matrix(rnorm(1000), ncol = 5)
eps <- rnorm(200, sd = 0.1)
y <- 2 + 0.5 * X[, 1] + 2 * X[, 3] + eps

covSIR(X, y)
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FOBIasymp Testing for the Number of Gaussian Components in NGCA or ICA
Using FOBI

Description

In non-gaussian component analysis (NGCA) and independent components analysis (ICA) gaussian
components are considered as uninteresting. The function tests, based on FOBI, if there are p-k
gaussian components where p is the dimension of the data. The function offers three different test
versions.

Usage

FOBIasymp(X, k, type = "S3", model = "NGCA", method = "satterthwaite")

Arguments

X numeric data matrix.

k the number of non-gaussian components under the null.

type which of the three tests to perform. Options are "S1", "S2" and "S3". For the
differences see the details section.

model What is the underlying assumption of the non-gaussian parts. Options are gen-
eral "NGCA" model and "ICA" model.

method if type = "S1" the teststatistic has as limiting distribution a weighted sum of
chisquare distributions. To compute the p-value then the function used is pchisqsum.
The method argument specifies which method pchisqsum uses for the compu-
tation. Options are "satterthwaite", "integration" and "saddlepoint".

Details

The function jointly diagonalizes the regular covariance and the matrix of fourth moments. Note
however that in this case the matrix of fourth moments is not made consistent under the normal
model by dividing it by p + 2, as for example done by the function cov4 where p denotes the di-
mension of the data. Therefore the eigenvalues of this generalized eigenvector-eigenvalue problem
which correspond to normally distributed components should be p+2.

Given eigenvalues d1, ..., dp the function thus orders the components in decending order according
to the values of (di − (p+ 2))2.

Under the null it is then assumed that the first k interesting components are mutually independent
and non-normal and the last p-k are gaussian.

Three possible tests are then available to test this null hypothesis for a sample of size n:

1. type="S1": The test statistic T is the variance of the last p-k eigenvalues around p+2:

T = n

p∑
i=k+1

(di − (p+ 2))2
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the limiting distribution of which under the null is the sum of two weighted chisquare distri-
butions with weights:
w1 = 2σ1/(p− k) and w2 = 2σ1/(p− k) + σ2.
and degrees of freedom:
df1 = (p− k − 1)(p− k + 2)/2 and df2 = 1.

2. type="S2": Another possible version for the test statistic is a scaled sum of the variance of
the eigenvalues around the mean plus the variance around the expected value under normality
(p+2). Denote V ARdpk as the variance of the last p-k eigenvalues and V AR2dpk as the
variance of these eigenvalues around p+ 2. Then the test statistic is:

T = (n(p− k)V ARdpk)/(2σ1) + (nV AR2dpk)/(2σ1/(p− k) + σ2)

This test statistic has a limiting chisquare distribution with (p − k − 1)(p − q + 2)/2 + 1
degrees of freedom.

3. type="S3": The third possible test statistic just checks the equality of the last p-k eigenvalues
using only the first part of the test statistic of type="S2". The test statistic is then:

T = (n(p− k)V ARdpk)/(2σ1)

and has a limiting chisquare distribution with (p− k − 1)(p− q + 2)/2 degrees of freedom.

The constants σ1 and σ2 depend on the underlying model assumptions as specified in argument
model and are estimated from the data.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.
p.value the p-value of the test.
parameter the degrees of freedom of the test or the degrees of freedoms and the correspond-

ing weights of the test in case the test has as its limiting distribution a weighted
sum of chisquare distributions.

method character string denoting which test was performed.
data.name character string giving the name of the data.
alternative character string specifying the alternative hypothesis.
k the number or non-gaussian components used in the testing problem.
W the transformation matrix to the independent components. Also known as un-

mixing matrix.
S data matrix with the centered independent components.
D the underlying FOBI eigenvalues.
MU the location of the data which was substracted before calculating the independent

components.
sigma1 the asymptotic constant sigma1 needed for the asymptotic test(s).
sigma2 the asymptotic constant sigma2 needed for the asymptotic test(s).
type the value of type.
model the value of model.
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Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.

Nordhausen, K., Oja, H., Tyler, D.E. and Virta, J. (2017), Asymptotic and Bootstrap Tests for the Di-
mension of the Non-Gaussian Subspace, Signal Processing Letters, 24, 887–891. <doi:10.1109/LSP.2017.2696880
>.

See Also

FOBI, FOBIboot

Examples

n <- 1500
S <- cbind(runif(n), rchisq(n, 2), rexp(n), rnorm(n), rnorm(n), rnorm(n))
A <- matrix(rnorm(36), ncol = 6)
X <- S %*% t(A)

FOBIasymp(X, k = 2)
FOBIasymp(X, k = 3, type = "S1")
FOBIasymp(X, k = 0, type = "S2", model = "ICA")

FOBIboot Boostrap-based Testing for the Number of Gaussian Components in
ICA Using FOBI

Description

In independent components analysis (ICA) gaussian components are considered as uninteresting.
The function uses boostrappping tests, based on FOBI, to decide if there are p-k gaussian compo-
nents where p is the dimension of the data. The function offers two different boostrapping strategies.

Usage

FOBIboot(X, k, n.boot = 200, s.boot = "B1")

Arguments

X a numeric data matrix with p>1 columns.

k the number of non-gaussian components under the null.

n.boot number of bootstrapping samples.

s.boot bootstrapping strategy to be used. Possible values are "B1", "B2". See details
for further information.
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Details

As in FOBIasymp the function jointly diagonalizes the regular covariance and the matrix of fourth
moments. Note that in this case the matrix of fourth moments is not made consistent under the
normal model by dividing it by p + 2, as for example done by the function cov4 where p denotes
the dimension of the data. Therefore the eigenvalues of this generalized eigenvector-eigenvalue
problem which correspond to normally distributed components should be p+2. Given eigenvalues
d1, ..., dp the function thus orders the components in descending order according to the values of
(di − (p+ 2))2.

Under the null it is then assumed that the first k interesting components are mutually independent
and non-normal and the last p-k components are gaussian.

Let d1, ..., dp be the ordered eigenvalues, W the correspondingly ordered unmixing matrix, si =
W (xi − MU) the corresponding source vectors which give the source matrix S which can be
decomposed into S1 and S2 where S1 is the matrix with the k non-gaussian components and S2 the
matrix with the gaussian components (under the null).

The test statistic is then T = n
∑p

i=k+1(di − (p+ 2))2

Two possible bootstrap tests are provided for testing that the last p-k components are gaussian and
independent from the first k components:

1. s.boot="B1": The first strategy has the followong steps:

(a) Take a bootstrap sample S∗
1 of size n from S1.

(b) Take a bootstrap sample S∗
2 consisting of a matrix of standard normally distributed ele-

ments.
(c) Combine S∗ = (S∗

1 , S
∗
2 ) and create X∗ = S∗W .

(d) Compute the test statistic based on X∗.
(e) Repeat the previous steps n.boot times.

Note that in this bootstrapping test the assumption of ”independent components” is not used,
it is only used that the last p − k components are gaussian and independent from the first k
components. Therefore this strategy can be applied in an independent component analysis
(ICA) framework and in a non-gaussian components analysis (NGCA) framework.

2. s.boot="B2": The second strategy has the following steps:

(a) Take a bootstrap sample S∗
1 of size n from S1 where the subsampling is done separately

for each independent component.
(b) Take a bootstrap sample S∗

2 consisting of a matrix of standard normally distributed el-
emenets.

(c) Combine S∗ = (S∗
1 , S

∗
2 ) and create X∗ = S∗W .

(d) Compute the test statistic based on X∗.
(e) Repeat the previous steps n.boot times.

This bootstrapping strategy assumes a full ICA model and cannot be used in an NGCA frame-
work.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.
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p.value the p-value of the test.

parameter the number of boostrapping samples used to obtain the p-value.

method character string which test was performed.

data.name character string giving the name of the data.

alternative character string specifying the alternative hypothesis.

k the number or non-gaussian components used in the testing problem.

W the transformation matrix to the independent components. Also known as un-
mixing matrix.

S data matrix with the centered independent components.

D the underlying FOBI eigenvalues.

MU the location of the data which was substracted before calculating the independent
components.

s.boot character string which boostrapping strategy was used.

Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.

Nordhausen, K., Oja, H., Tyler, D.E. and Virta, J. (2017), Asymptotic and Bootstrap Tests for the Di-
mension of the Non-Gaussian Subspace, Signal Processing Letters, 24, 887–891. <doi:10.1109/LSP.2017.2696880
>.

See Also

FOBI, FOBIasymp

Examples

n <- 1500
S <- cbind(runif(n), rchisq(n, 2), rexp(n), rnorm(n), rnorm(n), rnorm(n))
A <- matrix(rnorm(36), ncol = 6)
X <- S %*% t(A)

FOBIboot(X, k = 2)
FOBIboot(X, k = 3, s.boot = "B1")
FOBIboot(X, k = 0, s.boot = "B2")
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FOBIladle Ladle Estimate to Estimate the Number of Gaussian Components in
ICA or NGCA

Description

The ladle estimator uses the eigenvalues and eigenvectors of FOBI to estimate the number of Gaus-
sian components in ICA or NGCA.

Usage

FOBIladle(X, n.boot = 200,
ncomp = ifelse(ncol(X) > 10, floor(ncol(X)/log(ncol(X))), ncol(X) - 1))

Arguments

X numeric data matrix.

n.boot number of bootstrapping samples to be used.

ncomp The number of components among which the ladle estimator is to be searched.
The default here follows the recommendation of Luo and Li 2016.

Details

The model here assumes that in ICA or NGCA there are k non-gaussian components and p-k gaus-
sian components. The idea is then to decide which eigenvalues differ from p+2. The ladle estimate
for this purpose combines the values of the scaled eigenvalues and the variation of the eigenvectors
based on bootstrapping. The idea there is that for distinct eigenvales the variation of the eigenvectors
is small and for equal eigenvalues the corresponding eigenvectors have large variation.

This measure is then computed assuming k=0,..., ncomp and the ladle estimate for k is the value
where the measure takes its minimum.

Value

A list of class ladle containing:

method the string FOBI.

k the estimated number of non-gaussian components.

fn vector giving the measures of variation of the eigenvectors using the bootstrapped
eigenvectors for the different number of components.

phin normalized eigenvalues of the FOBI matrix.

gn the main criterion for the ladle estimate - the sum of fn and phin. k is the value
where gn takes its minimum

lambda the eigenvalues of the FOBI matrix.

W the transformation matrix to the independent components. Also known as un-
mixing matrix.
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S data matrix with the centered independent components.

MU the location of the data which was substracted before calculating the independent
components.

data.name the name of the data for which the ladle estimate was computed.

Author(s)

Klaus Nordhausen

References

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103. 875–887. <doi:10.1093/biomet/asw051>

See Also

ladleplot

Examples

n <- 1000
X <- cbind(rexp(n), rt(n,5), rnorm(n), rnorm(n), rnorm(n), rnorm(n))

test <- FOBIladle(X)
test
summary(test)
plot(test)
ladleplot(test)

ggladleplot Ladle Plot for an Object of Class ladle Using ggplot2

Description

The ladle plot is a measure to decide about the number of interesting components. Of interest for
the ladle criterion is the minimum. The function here offers however also to plot other criterion
values which are part of the actual ladle criterion.

Usage

ggladleplot(x, crit = "gn", type="l", ylab = crit,
xlab = "component", main = deparse(substitute(x)), ...)
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Arguments

x an object of class ladle.

crit the criterion to be plotted, options are "gn", "fn", "phin" and "lambda".

type plotting type.

ylab default ylab value.

xlab default xlab value.

main default title.

... other arguments for the plotting functions.

Details

The main criterion of the ladle is the scaled sum of the eigenvalues and the measure of variation of
the eigenvectors up to the component of interest.

The sum is denoted "gn" and the individual parts are "fn" for the measure of the eigenvector
variation and "phin" for the scaled eigenvalues. The last option "lambda" corresponds to the
unscaled eigenvalues yielding then a screeplot.

Author(s)

Klaus Nordhausen, Joni Virta

References

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103. 875–887. <doi:10.1093/biomet/asw051>

See Also

FOBIladle, PCAladle, SIRladle

Examples

n <- 1000
X <- cbind(rexp(n), rt(n,5), rnorm(n), rnorm(n), rnorm(n), rnorm(n))
test <- FOBIladle(X)
ggladleplot(test)
ggladleplot(test, crit="fn")
ggladleplot(test, crit="phin")
ggladleplot(test, crit="lambda")
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ggplot.ictest Scatterplot Matrix for a ictest Object using ggplot2

Description

For an object of class ictest, plots either the pairwise scatter plot matrix using ggpairs from GGally,
or the time series plots of the underlying components using ggplot2. The user can choose if only
the components considered interesting or all of them should be plotted. Aesthetics can be passed to
ggpairs as well.

Usage

## S3 method for class 'ictest'
ggplot(data, mapping = aes(), mapvar = NULL, which = "all", ...,

environment=parent.frame())

Arguments

data object of class ictest

mapping aesthetic mapping, see documentation for ggpairs. If x has the class mts then
this argument is not used.

mapvar data.frame of the external variables used by the aesthetic mappings. If x has the
class mts then this argument is not used.

which if "all", then all components of S in the ictest object are plotted. If "k", then
only the first k components are plotted, where the value of k is taken from the
ictest object. This is only meaningful if k was at least 2.

... arguments passed on to ggpairs. If the component matrix has the class mts,
xts or zoo then this argument is not used.

environment not used but needed for consistency.

Details

If the component matrix has the class mts, xts or zoo then a time series plot will be plotted using
ggplot2. Otherwise, a pairwise scatter plot matrix will be plotted using GGally.

Author(s)

Klaus Nordhausen, Joni Virta

See Also

plot.ictest, pairs
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Examples

# The data
X <- iris[, 1:4]

# The aesthetics variables
mapvar <- data.frame(iris[, 5])
colnames(mapvar) <- "species"

TestCov <- PCAasymp(X, k = 2)
ggplot(TestCov)
ggplot(TestCov, aes(color = species), mapvar = mapvar, which = "k")

ggplot.ladle Scatterplot Matrix for a ladle Object using ggplot2

Description

For an object of class ladle, plots either the pairwise scatter plot matrix using ggpairs from GGally,
or the time series plots of the underlying components using ggplot2. The user can choose if only
the components considered interesting or all of them should be plotted. Aesthetics can be passed to
ggpairs as well.

Usage

## S3 method for class 'ladle'
ggplot(data, mapping = aes(), mapvar = NULL, which = "all", ...,

environment=parent.frame())

Arguments

data object of class ladle

mapping aesthetic mapping, see documentation for ggpairs. If x has the class mts then
this argument is not used.

mapvar data.frame of the external variables used by the aesthetic mappings. If x has the
class mts then this argument is not used.

which if "all", then all components of S in the ladle object are plotted. If "k", then
only the first k components are plotted, where the value of k is taken from the
ladle object. This is only meaningful if k was at least 2.

... arguments passed on to ggpairs. If the component matrix has the class mts,
xts or zoo then this argument is not used.

environment not used but needed for consistency.

Details

If the component matrix has the class mts, xts or zoo then a time series plot will be plotted using
ggplot2. Otherwise, a pairwise scatter plot matrix will be plotted using GGally.
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Author(s)

Klaus Nordhausen, Joni Virta

See Also

plot.ladle, pairs

Examples

# The data
X <- as.matrix(iris[, 1:4])

# The aesthetics variables
mapvar <- data.frame(iris[, 5])
colnames(mapvar) <- "species"

ladle_res <- PCAladle(X)

# The estimate
summary(ladle_res)

# Plots of the components
ggplot(ladle_res)
ggplot(ladle_res, aes(color = species), mapvar = mapvar, which = "k")

ggscreeplot ggplot2-style screeplot

Description

A generic method for ggplot2-style screeplots.

Usage

ggscreeplot(x, ...)

Arguments

x An object of an appropriate class.

... Additional arguments.

Author(s)

Joni Virta, Klaus Nordhausen
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ggscreeplot.ictest Screeplot for an ictest Object Using ggplot2

Description

Plots the criterion values of an ictest object against its index number using ggplot2. Two versions
of this screeplot are available.

Usage

## S3 method for class 'ictest'
ggscreeplot(x, type = "barplot", main = deparse(substitute(x)),

ylab = "criterion", xlab = "component", ...)

Arguments

x object of class ictest.

type barplot if a barplot or lines if a line plot is preferred.

main main title of the plot.

ylab y-axis label.

xlab x-axis label.

... arguments passed to and from methods.

Author(s)

Klaus Nordhausen, Joni Virta

See Also

screeplot.ictest

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))

TestCov <- PCAasymp(X, k = 2)
ggscreeplot(TestCov)
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ICSboot Boostrap-based Testing for the Number of Gaussian Components in
NGCA Using Two Scatter Matrices

Description

In independent components analysis (ICA) gaussian components are considered as uninteresting.
The function uses boostrappping tests, based on ICS using any combination of two scatter matrices,
to decide if there are p-k gaussian components where p is the dimension of the data. The function
offers two different boostrapping strategies.

Usage

ICSboot(X, k, S1=cov, S2=cov4, S1args=NULL, S2args=NULL, n.boot = 200, s.boot = "B1")

Arguments

X a numeric data matrix with p>1 columns.

k the number of non-gaussian components under the null.

S1 name of the first scatter matrix function. Can only return a matrix. Default is
cov

.

S2 name of the second scatter matrix function. Can only return a matrix. Default is
cov4

S1args list with optional additional arguments for S1.

S2args list with optional additional arguments for S2.

n.boot number of bootstrapping samples.

s.boot bootstrapping strategy to be used. Possible values are "B1", "B2". See details
for further information.

Details

While in FOBIasymp and FOBIboot the two scatters used are always cov and cov4 this function can
be used with any two scatter functions. In that case however the value of the Gaussian eigenvalues
are in general not known and depend on the scatter functions used. Therefore the test uses as test
statistic the k successive eigenvalues with the smallest variance. Which means the default here
might differ from FOBIasymp and FOBIboot.

Given eigenvalues d1, ..., dp the function thus orders the components in descending order according
to the "variance" criterion .

Under the null it is then assumed that the first k interesting components are mutually independent
and non-normal and the last p-k components are gaussian.

Let d1, ..., dp be the ordered eigenvalues, W the correspondingly ordered unmixing matrix, si =
W (xi − MU) the corresponding source vectors which give the source matrix S which can be
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decomposed into S1 and S2 where S1 is the matrix with the k non-gaussian components and S2 the
matrix with the gaussian components (under the null).

Two possible bootstrap tests are provided for testing that the last p-k components are gaussian and
independent from the first k components:

1. s.boot="B1": The first strategy has the followong steps:
(a) Take a bootstrap sample S∗

1 of size n from S1.
(b) Take a bootstrap sample S∗

2 consisting of a matrix with gaussian random variables having
cov(S2).

(c) Combine S∗ = (S∗
1 , S

∗
2 ) and create X∗ = S∗W .

(d) Compute the test statistic based on X∗.
(e) Repeat the previous steps n.boot times.

Note that in this bootstrapping test the assumption of ”independent components” is not used,
it is only used that the last p − k components are gaussian and independent from the first k
components. Therefore this strategy can be applied in an independent component analysis
(ICA) framework and in a non-gaussian components analysis (NGCA) framework.

2. s.boot="B2": The second strategy has the following steps:
(a) Take a bootstrap sample S∗

1 of size n from S1 where the subsampling is done separately
for each independent component.

(b) Take a bootstrap sample S∗
2 consisting of a matrix with gaussian random variables having

cov(S2)

(c) Combine S∗ = (S∗
1 , S

∗
2 ) and create X∗ = S∗W .

(d) Compute the test statistic based on X∗.
(e) Repeat the previous steps n.boot times.

This bootstrapping strategy assumes a full ICA model and cannot be used in an NGCA frame-
work. Note that when the goal is to recover the non-gaussian independent components both
scatters used must have the independence property.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.
p.value the p-value of the test.
parameter the number of boostrapping samples used to obtain the p-value.
method character string which test was performed and which scatters were used.
data.name character string giving the name of the data.
alternative character string specifying the alternative hypothesis.
k the number or non-gaussian components used in the testing problem.
W the transformation matrix to the independent components. Also known as un-

mixing matrix.
S data matrix with the centered independent components.
D the underlying eigenvalues.
MU the location of the data which was substracted before calculating the independent

components.
s.boot character string which boostrapping strategy was used.
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Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.

Nordhausen, K., Oja, H., Tyler, D.E. and Virta, J. (2017), Asymptotic and Bootstrap Tests for the Di-
mension of the Non-Gaussian Subspace, Signal Processing Letters, 24, 887–891. <doi:10.1109/LSP.2017.2696880>.

Radojicic, U. and Nordhausen, K. (2020), Non-Gaussian Component Analysis: Testing the Di-
mension of the Signal Subspace. In Maciak, M., Pestas, M. and Schindler, M. (editors) "Analyti-
cal Methods in Statistics. AMISTAT 2019", 101–123, Springer, Cham. <doi:10.1007/978-3-030-
48814-7_6>.

See Also

ics, FOBIboot, FOBIasymp

Examples

n <- 750
S <- cbind(runif(n), rchisq(n, 2), rexp(n), rnorm(n), rnorm(n), rnorm(n))
A <- matrix(rnorm(36), ncol = 6)
X <- S %*% t(A)

# n.boot is small for demonstration purpose, should be larger
ICSboot(X, k=1, n.boot=20)

if(require("ICSNP")){

myTyl <- function(X,...) HR.Mest(X,...)$scatter
myT <- function(X,...) tM(X,...)$V

# n.boot is small for demonstration purpose, should be larger
ICSboot(X, k=3, S1=myT, S2=myTyl, s.boot = "B2", n.boot=20)
}

ladle Ladle estimate for an arbitrary matrix

Description

The ladle estimates the rank of a symmetric matrix S by combining the classical screeplot with an
estimate of the rank from the bootstrap eigenvector variability of S.

Usage

ladle(x, S, n.boots = 200, ...)
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Arguments

x n x p data matrix.

S Function for computing a q x q symmetric matrix from the data x.

n.boots The number of bootstrap samples.

... Furhter parameters passed to S

Details

Assume that the eigenvalues of the population version of S are λ1 >= ... >= λk > λk +1 = ... =
λp. The ladle estimates the true value of k (for example the rank of S) by combining the classical
screeplot with estimate of k from the bootstrap eigenvector variability of S.

For applying the ladle to either PCA, FOBI or SIR, see the dedicated functions PCAladle, FOBIladle,
SIRladle.

Value

A list of class ladle containing:

method The string “general”.

k The estimated value of k.

fn A vector giving the measures of variation of the eigenvectors using the boot-
strapped eigenvectors for the different number of components.

phin The normalized eigenvalues of the S matrix.

gn The main criterion for the ladle estimate - the sum of fn and phin. k is the value
where gn takes its minimum.

lambda The eigenvalues of the covariance matrix.

data.name The name of the data for which the ladle estimate was computed.

Author(s)

Joni Virta

References

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103. 875-887. <doi:10.1093/biomet/asw051>

See Also

PCAladle, FOBIladle, SIRladle



ladleplot 21

Examples

# Function for computing the left CCA matrix
S_CCA <- function(x, dim){

x1 <- x[, 1:dim]
x2 <- x[, -(1:dim)]
stand <- function(x){
x <- as.matrix(x)
x <- sweep(x, 2, colMeans(x), "-")
eigcov <- eigen(cov(x), symmetric = TRUE)
x%*%(eigcov$vectors%*%diag((eigcov$values)^(-1/2))%*%t(eigcov$vectors))

}

x1stand <- stand(x1)
x2stand <- stand(x2)

crosscov <- cov(x1stand, x2stand)

tcrossprod(crosscov)
}

# Toy data with two canonical components
n <- 200
x1 <- matrix(rnorm(n*5), n, 5)
x2 <- cbind(x1[, 1] + rnorm(n, sd = sqrt(0.5)),

-1*x1[, 1] + x1[, 2] + rnorm(n, sd = sqrt(0.5)),
matrix(rnorm(n*3), n, 3))

x <- cbind(x1, x2)

# The ladle estimate
ladle_1 <- ladle(x, S_CCA, dim = 5)
ladleplot(ladle_1)

ladleplot Ladle Plot for an Object of Class ladle

Description

The ladle plot is a measure to decide about the number of interesting components. Of interest for
the ladle criterion is the minimum. The function here offers however also to plot other criterion
values which are part of the actual ladle criterion.

Usage

ladleplot(x, crit = "gn", type="l", ylab = crit,
xlab = "component", main = deparse(substitute(x)), ...)
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Arguments

x an object of class ladle.

crit the criterion to be plotted, options are "gn", "fn", "phin" and "lambda".

type plotting type.

ylab default ylab value.

xlab default xlab value.

main default title.

... other arguments for the plotting functions.

Details

The main criterion of the ladle is the scaled sum of the eigenvalues and the measure of variation of
the eigenvectors up to the component of interest.

The sum is denoted "gn" and the individual parts are "fn" for the measure of the eigenvector
variation and "phin" for the scaled eigenvalues. The last option "lambda" corresponds to the
unscaled eigenvalues yielding then a screeplot.

Author(s)

Klaus Nordhausen

References

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103. 875–887. <doi:10.1093/biomet/asw051>

See Also

FOBIladle, PCAladle, SIRladle

Examples

n <- 1000
X <- cbind(rexp(n), rt(n,5), rnorm(n), rnorm(n), rnorm(n), rnorm(n))
test <- FOBIladle(X)
ladleplot(test)
ladleplot(test, crit="fn")
ladleplot(test, crit="phin")
ladleplot(test, crit="lambda")
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NGPP Non-Gaussian Projection Pursuit

Description

Estimates k non-Gaussian signal components using projection pursuit. The projection index can be
chosen among convex combinations of squares of one or several standard projection indices used in
ICA.

Usage

NGPP(X, k, nl = c("skew", "pow3"), alpha = 0.8, method = "symm", eps = 1e-6,
verbose = FALSE, maxiter = 100)

Arguments

X Numeric matrix with n rows corresponding to the observations and p columns
corresponding to the variables.

k Number of components to estimate, 1 ≤ k ≤ p.
nl Vector of non-linearities, a convex combination of the corresponding squared

objective functions of which is then used as the projection index. The choices
include "skew" (skewness), "pow3" (excess kurtosis), "tanh" (log(cosh)) and
"gauss" (Gaussian function).

alpha Vector of positive weights between 0 and 1 given to the non-linearities. The
length of alpha should be either one less than the number of non-linearities in
which case the missing weight is chosen so that alpha sums to one, or equal to
the number of non-linearities in which case the weights are used as such. No
boundary checks for the weights are done.

method If "symm" the k signals are estimated simultaneously (symmetric projection pur-
suit) and if "defl" they are estimated one-by-one (deflation-based projection
pursuit).

eps Convergence tolerance.
verbose If TRUE the numbers of iterations will be printed.
maxiter Maximum number of iterations.

Details

It is assumed that the data is a random sample from the model x = m+As where the latent vector
s = (sT1 , s

T
2 )

T consists of k-dimensional non-Gaussian subvector (the signal) and p−k-dimensional
Gaussian subvector (the noise) and the components of s are mutually independent. Without loss of
generality we further assume that the components of s have zero means and unit variances.

The objective is to estimate an inverse for the mixing matrix A and in non-Gaussian projection
pursuit this is done by first standardizaing the observations and then finding mutually orthogonal
directions maximizing a convex combination of the chosen squared objective functions.

After estimation the found signals are ordered in decreasing order with respect to their objective
function values.
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Value

A list with class ’bss’ containing the following components:

W Estimated unmixing matrix

S Matrix of size n× k containing the estimated signals.

D Vector of the objective function values of the signals

MU Location vector of the data which was substracted before estimating the signal
components.

Author(s)

Joni Virta

References

Virta, J., Nordhausen, K. and Oja, H., (2016), Projection Pursuit for non-Gaussian Independent
Components, <https://arxiv.org/abs/1612.05445>.

See Also

NGPPsim, NGPPest, fICA

Examples

# Simulated data with 2 signals

n <- 500
S <- cbind(rexp(n), runif(n), rnorm(n))
A <- matrix(rnorm(9), ncol = 3)
X <- S %*% t(A)

res <- NGPP(X, 2)
res$W %*% A

# Iris data

X <- as.matrix(iris[, 1:4])

res <- NGPP(X, 2, nl = c("pow3", "tanh"), alpha = 0.5)
plot(res, col = iris[, 5])
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NGPPest Signal Subspace Dimension Testing Using non-Gaussian Projection
Pursuit

Description

Estimates the dimension of the signal subspace using NGPP to conduct sequential hypothesis test-
ing. The test statistic is a multivariate extension of the classical Jarque-Bera statistic and the distri-
bution of it under the null hypothesis is obtained by simulation.

Usage

NGPPest(X, nl = c("skew", "pow3"), alpha = 0.8, N = 500, eps = 1e-6,
verbose = FALSE, maxiter = 100)

Arguments

X Numeric matrix with n rows corresponding to the observations and p columns
corresponding to the variables.

nl Vector of non-linearities, a convex combination of the corresponding squared
objective functions of which is then used as the projection index. The choices
include "skew" (skewness), "pow3" (excess kurtosis), "tanh" (log(cosh)) and
"gauss" (Gaussian function).

alpha Vector of positive weights between 0 and 1 given to the non-linearities. The
length of alpha should be either one less than the number of non-linearities in
which case the missing weight is chosen so that alpha sums to one, or equal to
the number of non-linearities in which case the weights are used as such. No
boundary checks for the weights are done.

N Number of normal samples to be used in simulating the distribution of the test
statistic under the null hypothesis.

eps Convergence tolerance.

verbose If TRUE the numbers of iterations will be printed.

maxiter Maximum number of iterations.

Details

It is assumed that the data is a random sample from the model x = m+As where the latent vector
s = (sT1 , s

T
2 )

T consists of k-dimensional non-Gaussian subvector (the signal) and p−k-dimensional
Gaussian subvector (the noise) and the components of s are mutually independent. Without loss of
generality we further assume that the components of s have zero means and unit variances.

The algorithm first estimates full p components from the data using deflation-based NGPP with the
chosen non-linearities and weighting and then tests the null hypothesis H0 : ktrue ≤ k for each
k = 0, . . . , p − 1. The testing is based on the fact that under the null hypothesis H0 : ktrue ≤ k
the distribution of the final p − k components is standard multivariate normal and the significance
of the test can be obtained by comparing the objective function value of the (k + 1)th estimated
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components to the same quantity estimated from N samples of size n from (p − k)-dimensional
standard multivariate normal distribution.

Note that if maxiter is reached at any step of the algorithm it will use the current estimated direction
and continue to the next step.

Value

A list with class ’icest’ containing the following components:

statistic Test statistic, i.e. the objective function values of all estimated component.

p.value Obtained vector of p-values.

parameter Number N of simulated normal samples.

method Character string "Estimation the signal subspace dimension using NGPP".

data.name Character string giving the name of the data.

W Estimated unmixing matrix

S Matrix of size n× p containing the estimated signals.

D Vector of the objective function values of the signals

MU Location vector of the data which was substracted before estimating the signal
components.

conv Boolean vector telling for which components the algorithm converged (TRUE)
and for which not (FALSE).

Author(s)

Joni Virta

References

Virta, J., Nordhausen, K. and Oja, H., (2016), Projection Pursuit for non-Gaussian Independent
Components, <https://arxiv.org/abs/1612.05445>.

See Also

NGPP, NGPPsim

Examples

# Iris data

X <- as.matrix(iris[, 1:4])

# The number of simulations N should be increased in practical situations
# Now we settle for N = 100

res <- NGPPest(X, N = 100)
res$statistic
res$p.value
res$conv
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NGPPsim Signal Subspace Dimension Testing Using non-Gaussian Projection
Pursuit

Description

Tests whether the true dimension of the signal subspace is less than or equal to a given k. The test
statistic is a multivariate extension of the classical Jarque-Bera statistic and the distribution of it
under the null hypothesis is obtained by simulation.

Usage

NGPPsim(X, k, nl = c("skew", "pow3"), alpha = 0.8, N = 1000, eps = 1e-6,
verbose = FALSE, maxiter = 100)

Arguments

X Numeric matrix with n rows corresponding to the observations and p columns
corresponding to the variables.

k Number of components to estimate, 1 ≤ k ≤ p.

nl Vector of non-linearities, a convex combination of the corresponding squared
objective functions of which is then used as the projection index. The choices
include "skew" (skewness), "pow3" (excess kurtosis), "tanh" (log(cosh)) and
"gauss" (Gaussian function).

alpha Vector of positive weights between 0 and 1 given to the non-linearities. The
length of alpha should be either one less than the number of non-linearities in
which case the missing weight is chosen so that alpha sums to one, or equal to
the number of non-linearities in which case the weights are used as such. No
boundary checks for the weights are done.

N Number of normal samples to be used in simulating the distribution of the test
statistic under the null hypothesis.

eps Convergence tolerance.

verbose If TRUE the numbers of iterations will be printed.

maxiter Maximum number of iterations.

Details

It is assumed that the data is a random sample from the model x = m+As where the latent vector
s = (sT1 , s

T
2 )

T consists of k-dimensional non-Gaussian subvector (the signal) and p−k-dimensional
Gaussian subvector (the noise) and the components of s are mutually independent. Without loss of
generality we further assume that the components of s have zero means and unit variances.

To test the null hypothesis H0 : ktrue ≤ k the algorithm first estimates k + 1 components using
delfation-based NGPP with the chosen non-linearities and weighting. Under the null hypothesis the
distribution of the final p−k components is standard multivariate normal and the significance of the
test is obtained by comparing the objective function value of the (k+1)th estimated components to



28 NGPPsim

the same quantity estimated from N samples of size n from (p−k)-dimensional standard multivariate
normal distribution.

Note that if maxiter is reached at any step of the algorithm it will use the current estimated direction
and continue to the next step.

Value

A list with class ’ictest’, inheriting from the class ’hctest’, containing the following components:

statistic Test statistic, i.e. the objective function value of the (k + 1)th estimated compo-
nent.

p.value Obtained p-value.

parameter Number N of simulated normal samples.

method Character string denoting which test was performed.

data.name Character string giving the name of the data.

alternative Alternative hypothesis, i.e. "There are less than p - k Gaussian components".

k Tested dimension k.

W Estimated unmixing matrix

S Matrix of size n× (k + 1) containing the estimated signals.

D Vector of the objective function values of the signals

MU Location vector of the data which was substracted before estimating the signal
components.

Author(s)

Joni Virta

References

Virta, J., Nordhausen, K. and Oja, H., (2016), Projection Pursuit for non-Gaussian Independent
Components, <https://arxiv.org/abs/1612.05445>.

See Also

NGPP, NGPPest

Examples

# Simulated data with 2 signals and 2 noise components

n <- 200
S <- cbind(rexp(n), rbeta(n, 1, 2), rnorm(n), rnorm(n))
A <- matrix(rnorm(16), ncol = 4)
X <- S %*% t(A)

# The number of simulations N should be increased in practical situations
# Now we settle for N = 100
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res1 <- NGPPsim(X, 1, N = 100)
res1
screeplot(res1)

res2 <- NGPPsim(X, 2, N = 100)
res2
screeplot(res2)

PCAasymp Testing for Subsphericity using the Covariance Matrix or Tyler’s
Shape Matrix

Description

The function tests, assuming an elliptical model, that the last p-k eigenvalues of a scatter matrix are
equal and the k interesting components are those with a larger variance. The scatter matrices that
can be used here are the regular covariance matrix and Tyler’s shape matrix.

Usage

PCAasymp(X, k, scatter = "cov", ...)

Arguments

X a numeric data matrix with p>1 columns.

k the number of eigenvalues larger than the equal ones. Can be between 0 and p-2.

scatter the scatter matrix to be used. Can be "cov" or "tyler". For "cov" the regular
covariance matrix is computed and for "tyler" the function HR.Mest is used to
compute Tyler’s shape matrix.

... arguments passed on to HR.Mest if scatter = "tyler".

Details

The functions assumes an elliptical model and tests if the last p− k eigenvalues of PCA are equal.
PCA can here be either be based on the regular covariance matrix or on Tyler’s shape matrix.

For a sample of size n, the test statistic is

T = n/(2d̄2σ1)

p∑
k+1

(di − d̄)2,

where d̄ is the mean of the last p− k PCA eigenvalues.

The constant σ1 is for the regular covariance matrix estimated from the data whereas for Tyler’s
shape matrix it is simply a function of the dimension of the data.

The test statistic has a limiting chisquare distribution with (p − k − 1)(p − k + 2)/2 degrees of
freedom.

Note that the regular covariance matrix is here divided by n and not by n− 1.



30 PCAasymp

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.

p.value the p-value of the test.

parameter the degrees of freedom of the test.

method character string which test was performed.

data.name character string giving the name of the data.

alternative character string specifying the alternative hypothesis.

k the number or larger eigenvalues used in the testing problem.

W the transformation matrix to the principal components.

S data matrix with the centered principal components.

D the underlying eigenvalues.

MU the location of the data which was substracted before calculating the principal
components.

SCATTER the computed scatter matrix.

sigma1 the asymptotic constant needed for the asymptotic test.

Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.

See Also

HR.Mest, PCAboot

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))

TestCov <- PCAasymp(X, k = 2)
TestCov
TestTyler <- PCAasymp(X, k = 1, scatter = "tyler")
TestTyler
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PCAaug Augmentation Estimate for PCA

Description

For p-variate data, the augmentation estimate for PCA assumes that the last p-k eigenvalues are
equal. Combining information from the eigenvalues and eigenvectors of the covariance matrix the
augmentation estimator yields an estimate for k.

Usage

PCAaug(X, noise = "median", naug = 1, nrep = 1, sigma2 = NULL, alpha = NULL)

Arguments

X numeric data matrix.

noise name of the method to be used to estimate the noise variance. Options are
"median", "last", "quantile" or "known". See details.

naug number of components to be augmented.

nrep number of repetitions for the augmentation procedure.

sigma2 value of the noise variance when noise = "known".

alpha the quantile to be used when noise = "quantile".

Details

The model here assumes that the eigenvalues of the covariance matrix are of the form λ1 ≥ ... ≥
λk > λk+1 = ... = λp and the goal is to estimate the value of k. The value λk+1 corresponds then
to the noise variance.

The augmented estimator adds for that purpose naug Gaussian components with the provided noise
variance which needs to be provided (noise = "known") or estimated from the data. Three es-
timation methods are available. In the case of noise = "median" the estimate is the median of
the eigenvalues of the covariance matrix, in the case of noise = "last" it corresponds to the last
eigenvalue of the covariance matrix and in the case of noise = "quantile" it is the mean of the
eigenvalues smaller or equal to the alpha-quantile of the eigenvalues of the covariance matrix.

The augmentation estimator uses then the augmented components to measure the variation of the
eigenvalues. For a more stable result it is recommened to repeat the augmentation process several
times and Lue and Li (2021) recommend to use for naug approximately p/5 or p/10 where p is the
number of columns of X.

The augmented estimator for this purpose combines then the values of the scaled eigenvalues and
the variation measured via augmentation. The main idea there is that for distinct eigenvales the
variation of the eigenvectors is small and for equal eigenvalues the corresponding eigenvectors have
large variation.

The augmented estimate for k is the value where the measure takes its minimum and can be also
visualized as a ladle.

For further details see Luo and Li (2021) and Radojicic et al. (2021).



32 PCAaug

Value

A list of class ladle containing:

method the string PCA.
k the estimated value of k.
fn vector giving the measures of variation of the eigenvectors using the bootstrapped

eigenvectors for the different number of components.
phin normalized eigenvalues of the covariance matrix.
gn the main criterion for the augmented estimate - the sum of fn and phin. k is the

value where gn takes its minimum
lambda the eigenvalues of the covariance matrix.
W the transformation matrix to the principal components.
S data matrix with the centered principal components.
MU the location of the data which was substracted before calculating the principal

components.
data.name the name of the data for which the augmented estimate was computed.
sigma2 the value used as noise variance when simulating the augmented components.

Author(s)

Klaus Nordhausen

References

Luo, W. and Li, B. (2021), On Order Determination by Predictor Augmentation, Biometrika, 108,
557–574. <doi:10.1093/biomet/asaa077>

Radojicic, U., Lietzen, N., Nordhausen, K. and Virta, J. (2021), Dimension Estimation in Two-
Dimensional PCA. In S. Loncaric, T. Petkovic and D. Petrinovic (editors) "Proceedings of the
12 International Symposium on Image and Signal Processing and Analysis (ISPA 2021)", 16–22.
<doi:10.1109/ISPA52656.2021.9552114>

See Also

ladleplot, PCAladle

Examples

n <- 1000
Y <- cbind(rnorm(n, sd=2), rnorm(n,sd=2), rnorm(n), rnorm(n), rnorm(n), rnorm(n))

testPCA <- PCAaug(Y)
testPCA
summary(testPCA)
plot(testPCA)
ladleplot(testPCA)
ladleplot(testPCA, crit = "fn")
ladleplot(testPCA, crit = "lambda")
ladleplot(testPCA, crit = "phin")
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PCAboot Bootstrap-Based Testing for Subsphericity

Description

The function tests, assuming an elliptical model, that the last p-k eigenvalues of a scatter matrix
are equal and the k interesting components are those with a larger variance. To obtain p-values two
different bootstrapping strategies are available and the user can provide the scatter matrix to be used
as a function.

Usage

PCAboot(X, k, n.boot = 200, s.boot = "B1", S = MeanCov, Sargs = NULL)

Arguments

X a numeric data matrix with p>1 columns.

k the number of eigenvalues larger than the equal ones. Can be between 0 and p-2.

n.boot number of bootstrapping samples.

s.boot bootstrapping strategy to be used. Possible values are "B1", "B2". See details
for further information.

S A function which returns a list that has as its first element a location vector and
as the second element the scatter matrix.

Sargs list of further arguments passed on to the function specified in S.

Details

Here the function S needs to return a list where the first argument is a location vector and the second
one a scatter matrix.

The location is used to center the data and the scatter matrix is used to perform PCA.

Consider X as the centered data and denote by W the transformation matrix to the principal compo-
nents. The corresponding eigenvalues from PCA are d1, ..., dp. Under the null, dk > dk+1 = ... =
dp. Denote further by d̄ the mean of the last p-k eigenvalues and by D∗ = diag(d1, ..., dk, d̄, ..., d̄)
a p × p diagonal matrix. Assume that S is the matrix with principal components which can be
decomposed into S1 and S2 where S1 contains the k interesting principal components and S2 the
last p− k principal components.

For a sample of size n, the test statistic used for the boostrapping tests is

T = n/(d̄2)

p∑
k+1

(di − d̄)2.

The function offers then two boostrapping strategies:

1. s.boot="B1": The first strategy has the following steps:
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(a) Take a bootstrap sample S∗ of size n from S and decompose it into S∗
1 and S∗

2 .
(b) Every observation in S∗

2 is transformed with a different random orthogonal matrix.
(c) Recombine S∗ = (S∗

1 , S
∗
2 ) and create X∗ = S∗W .

(d) Compute the test statistic based on X∗.
(e) Repeat the previous steps n.boot times.

2. s.boot="B2": The second strategy has the following steps:

(a) Scale each principal component using the matrix D, i.e. Z = SD.
(b) Take a bootstrap sample Z∗ of size n from Z.
(c) Every observation in Z∗ is transformed with a different random orthogonal matrix.
(d) Recreate X∗ = Z∗D∗−1W .
(e) Compute the test statistic based on X∗.
(f) Repeat the previous steps n.boot times.

To create the random orthogonal matrices the function rorth is used.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.

p.value the p-value of the test.

parameter the degrees of freedom of the test.

method character string which test was performed.

data.name character string giving the name of the data.

alternative character string specifying the alternative hypothesis.

k the number or larger eigenvalues used in the testing problem.

W the transformation matrix to the principal components.

S data matrix with the centered principal components.

D the underlying eigenvalues.

MU the location of the data which was substracted before calculating the principal
components.

SCATTER The computed scatter matrix.

scatter character string denoting which scatter function was used.

s.boot character string denoting which bootstrapping test version was used.

Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.
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See Also

cov, MeanCov, PCAasymp

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))

# for demonstration purpose the n.boot is chosen small, should be larger in real applications

TestCov <- PCAboot(X, k = 2, n.boot=30)
TestCov

TestTM <- PCAboot(X, k = 1, n.boot=30, s.boot = "B2", S = "tM", Sargs = list(df=2))
TestTM

PCAladle Ladle Estimate for PCA

Description

For p-variate data, the Ladle estimate for PCA assumes that the last p-k eigenvalues are equal.
Combining information from the eigenvalues and eigenvectors of the covariance matrix the ladle
estimator yields an estimate for k.

Usage

PCAladle(X, n.boot = 200,
ncomp = ifelse(ncol(X) > 10, floor(ncol(X)/log(ncol(X))), ncol(X) - 1))

Arguments

X numeric data matrix.

n.boot number of bootstrapping samples to be used.

ncomp The number of components among which the ladle estimator is to be searched.
The default here follows the recommendation of Luo and Li 2016.

Details

The model here assumes that the eigenvalues of the covariance matrix are of the form λ1 ≥ ... ≥
λk > λk+1 = ... = λp and the goal is to estimate the value of k. The ladle estimate for this
purpose combines the values of the scaled eigenvalues and the variation of the eigenvectors based
on bootstrapping. The idea there is that for distinct eigenvales the variation of the eigenvectors is
small and for equal eigenvalues the corresponding eigenvectors have large variation.

This measure is then computed assuming k=0,..., ncomp and the ladle estimate for k is the value
where the measure takes its minimum.
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Value

A list of class ladle containing:

method the string PCA.

k the estimated value of k.

fn vector giving the measures of variation of the eigenvectors using the bootstrapped
eigenvectors for the different number of components.

phin normalized eigenvalues of the covariance matrix.

gn the main criterion for the ladle estimate - the sum of fn and phin. k is the value
where gn takes its minimum

lambda the eigenvalues of the covariance matrix.

W the transformation matrix to the principal components.

S data matrix with the centered principal components.

MU the location of the data which was substracted before calculating the principal
components.

data.name the name of the data for which the ladle estimate was computed.

Author(s)

Klaus Nordhausen

References

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103, 875–887. <doi:10.1093/biomet/asw051>

See Also

ladleplot

Examples

n <- 1000
Y <- cbind(rnorm(n, sd=2), rnorm(n,sd=2), rnorm(n), rnorm(n), rnorm(n), rnorm(n))

testPCA <- PCAladle(Y)
testPCA
summary(testPCA)
plot(testPCA)
ladleplot(testPCA)
ladleplot(testPCA, crit = "fn")
ladleplot(testPCA, crit = "lambda")
ladleplot(testPCA, crit = "phin")
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PCAschott Testing for Subsphericity using the Schott’s test

Description

The test tests the equality of the last eigenvalues assuming normal distributed data using the regular
covariance matrix.

Usage

PCAschott(X, k)

Arguments

X a numeric data matrix with p>1 columns.

k the number of eigenvalues larger than the equal ones. Can be between 0 and p-2.

Details

The functions assumes multivariate normal data and tests if the last p − k eigenvalues of PCA are
equal.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.

p.value the p-value of the test.

parameter the degrees of freedom of the test.

method character string which test was performed.

data.name character string giving the name of the data.

alternative character string specifying the alternative hypothesis.

k the number or larger eigenvalues used in the testing problem.

W the transformation matrix to the principal components.

S data matrix with the centered principal components.

D the underlying eigenvalues.

MU the mean vector of the data which was substracted before calculating the princi-
pal components.

SCATTER the computed covariance matrix matrix.

Author(s)

Klaus Nordhausen
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References

Schott, J.R. (2006), A High-Dimensional Test for the Equality of the Smallest Eigenvalues of a Co-
variance Matrix, Journal of Multivariate Analysis, 97, 827–843. <doi:10.1016/j.jmva.2005.05.003>

See Also

PCAasymp, PCAboot

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))
PCAschott(X, 2)

plot.ictest Scatterplot Matrix for a ictest Object

Description

For an object of class ictest, plots either the pairwise scatter plot matrix, or the time series plots of
the underlying components. The user can choose if only the components considered interesting or
all of them should be plotted.

Usage

## S3 method for class 'ictest'
plot(x, which = "all", ...)

Arguments

x object of class ictest

which if "all", then all components of S in the ictest object are plotted. If "k", then
only the first k components are plotted, where the value of k is taken from the
ictest object. This is only meaningful if k was at least 2.

... other arguments passed on to pairs if the components are a numeric matrix or to
plot.ts, plot.zoo or plot.xts if the components are from the corresponding
class.

Details

If the component matrix has the class mts, xts or zoo, then a time series plot will be plotted.
Otherwise, the pairwise scatter plot matrix will be plotted.

Author(s)

Klaus Nordhausen
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See Also

ggplot.ictest, pairs, plot.ts, plot.zoo, plot.xts

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))

TestCov <- PCAasymp(X, k = 2)
plot(TestCov)
plot(TestCov, which = "k")

plot.ladle Plotting an Object of Class ladle

Description

An object of class ladle contains always the source components as estimated by the corresponding
statistical method. This function either plots all of the components or only this considered interest-
ing according to the ladle estimate.

Usage

## S3 method for class 'ladle'
plot(x, which = "all", ...)

Arguments

x an object of class ladle.

which if "all", then all components of S in the ladle object are plotted. If "k", then
only the k components are plotted, which are considered interesting according
to the ladle estimator. This is only meaningful if the estimated ’k’ is at least 2.

... other arguments passed on to pairs if the components are a numeric matrix or to
plot.ts, plot.zoo or plot.xts if the components are from the corresponding
class.

Details

If the component matrix has the class mts, xts or zoo, then a time series plot will be plotted.
Otherwise, the pairwise scatter plot matrix will be plotted.

Author(s)

Klaus Nordhausen

See Also

pairs, plot.ts, plot.zoo, plot.xts
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Examples

n <- 1000
X <- cbind(rexp(n), rt(n,5), rnorm(n), rnorm(n), rnorm(n), rnorm(n))
test <- FOBIladle(X)
plot(test)

print.ladle Printing an Object of Class ladle

Description

Basic printing of an object of class ladle. Prints basically everything but the estimated components.

Usage

## S3 method for class 'ladle'
print(x, ...)

Arguments

x an object of class ladle.

... further arguments to be passed to or from methods.

Author(s)

Klaus Nordhausen

See Also

summary.ladle, plot.ladle, ladleplot, FOBIladle, PCAladle, SIRladle

Examples

n <- 1000
X <- cbind(rexp(n), rt(n,5), rnorm(n), rnorm(n), rnorm(n), rnorm(n))
test <- FOBIladle(X)
test
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rMU Greek Letter mu Shaped Bivariate Data Generation

Description

A function to generate bivariate data with the scatterplot resembling the greek letter mu.

Usage

rMU(n)

Arguments

n the sample size.

Value

A n times 2 matrix

Author(s)

Klaus Nordhausen, Joni Virta

Examples

x <- rMU(1000)

plot(x)

rOMEGA Greek Letter Omega Shaped Bivariate Data Generation

Description

A function to generate bivariate data with the scatterplot resembling the greek letter Omega.

Usage

rOMEGA(n)

Arguments

n the sample size.

Value

A n times 2 matrix
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Author(s)

Klaus Nordhausen, Joni Virta

Examples

x <- rOMEGA(1000)

plot(x)

rorth Random Orthogonal Matrix Creation Uniform WRT the Haar Mea-
sure.

Description

A function to create a random orthogonal matrix uniformly distributed with respect to the Haar
measure.

Usage

rorth(k)

Arguments

k the desired numer of columns (=rows) of the orthogonal matrix.

Details

The function fills a kxk matrix with N(0,1) random variables and perfroms then a QR decompoistion
using qr. If the diagonal elements of R are all positive the resulting orthogonal matrix Q is uniform
distributed wrt to the Haar measure. Note that the function currently does not check if all diagonal
measurements are indeed positive (however this will happen with probability 1 in theory).

Value

An orthogonal k times k matrix

Author(s)

Klaus Nordhausen

References

Stewart, G.W. (1980), The efficient generation of random orthogonal matrices with an application to
condition estimators, SIAM Journal on Numerical Analysis, 17, 403–409. <doi:10.1137/0717034>.
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Examples

Orth <- rorth(4)

crossprod(Orth)
tcrossprod(Orth)

screeplot.ictest Screeplot for an ictest Object

Description

Plots the criterion values of an ictest object against its index number. Two versions of this
screeplot are available.

Usage

## S3 method for class 'ictest'
screeplot(x, type = "barplot", main = deparse(substitute(x)),
ylab = "criterion", xlab = "component", ...)

Arguments

x object of class ictest.

type barplot if a barplot or lines if a line plot is preferred.

main main title of the plot.

ylab y-axis label.

xlab x-axis label.

... other arguments for the plotting functions.

Author(s)

Klaus Nordhausen

See Also

ggscreeplot

Examples

n <- 200
X <- cbind(rnorm(n, sd = 2), rnorm(n, sd = 1.5), rnorm(n), rnorm(n), rnorm(n))

TestCov <- PCAasymp(X, k = 2)
screeplot(TestCov)
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SIRasymp Testing the Subspace Dimension for Sliced Inverse Regression.

Description

Using the two scatter matrices approach (SICS) for sliced inversion regression (SIR), the function
tests if the last p-k components have zero eigenvalues, where p is the number of explaining vari-
ables. Hence the assumption is that the first k components are relevant for modelling the response
y and the remaining components are not.

Usage

SIRasymp(X, y, k, h = 10, ...)

Arguments

X a numeric data matrix of explaining variables.
y a numeric vector specifying the response.
k the number of relevant components under the null hypothesis.
h the number of slices used in SIR. Passed on to function covSIR.
... other arguments passed on to covSIR.

Details

Under the null the first k eigenvalues contained in D are non-zero and the remaining p-k are zero.

For a sample of size n, the test statistic T is then n times the sum of these last p-k eigenvalue and
has under the null a chisquare distribution with (p− k)(h− k− 1) degrees of freedom, therefore it
is required that k < h− 1.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.
p.value the p-value of the test.
parameter the degrees of freedom of the test.
method character string which test was performed.
data.name character string giving the name of the data.
alternative character string specifying the alternative hypothesis.
k the number of non-zero eigenvalues used in the testing problem.
W the transformation matrix to the underlying components.
S data matrix with the centered underlying components.
D the underlying eigenvalues.
MU the location of the data which was substracted before calculating the compo-

nents.
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Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.

See Also

covSIR, SIRboot

Examples

X <- matrix(rnorm(1000), ncol = 5)
eps <- rnorm(200, sd = 0.1)
y <- 2 + 0.5 * X[, 1] + 2 * X[, 3] + eps

SIRasymp(X, y, k = 0)
SIRasymp(X, y, k = 1)

SIRboot Testing the Subspace Dimension for Sliced Inverse Regression Using
Bootstrapping.

Description

Using the two scatter matrices approach (SICS) for sliced inversion regression (SIR) the function
tests if the last p-k components have zero eigenvalues, where p is the number of explaining vari-
ables. Hence the assumption is that the first k components are relevant for modelling the response
y and the remaining components are not. The function performs bootstrapping to obtain a p-value.

Usage

SIRboot(X, y, k, h = 10, n.boot = 200, ...)

Arguments

X a numeric data matrix of explaining variables.

y a numeric vector specifying the response.

k the number of relevant components under the null hypothesis.

h the number of slices used in SIR. Passed on to function covSIR.

n.boot number of bootstrapping samples.

... other arguments passed on to covSIR.
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Details

Under the null hypthesis the last p-k eigenvalue as given in D are zero. The test statistic is then the
sum of these eigenvalues.

Denote W as the transformation matrix to the supervised invariant coordinates (SIC) si, i =
1, . . . , n, i.e.

si = W (xi −MU),

where MU is the location.

Let S1 be the submatrix of the SICs which are relevant and S2 the submatrix of the SICs which are
irrelevant for the response y under the null.

The boostrapping has then the following steps:

1. Take a boostrap sample (y∗, S∗
1 ) of size n from (y, S1).

2. Take a boostrap sample S∗
2 of size n from S2.

3. Combine S∗ = (S∗
1 , S

∗
2 ) and create X∗ = S∗W .

4. Compute the test statistic based on X∗.

5. Repeat the previous steps n.boot times.

Value

A list of class ictest inheriting from class htest containing:

statistic the value of the test statistic.

p.value the p-value of the test.

parameter the number of boostrapping samples used to compute the p-value.

method character string which test was performed.

data.name character string giving the name of the data.

alternative character string specifying the alternative hypothesis.

k the number of non-zero eigenvalues used in the testing problem.

W the transformation matrix to the underlying components.

S data matrix with the centered underlying components.

D the underlying eigenvalues.

MU the location of the data which was substracted before calculating the compo-
nents.

Author(s)

Klaus Nordhausen

References

Nordhausen, K., Oja, H. and Tyler, D.E. (2022), Asymptotic and Bootstrap Tests for Subspace
Dimension, Journal of Multivariate Analysis, 188, 104830. <doi:10.1016/j.jmva.2021.104830>.
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See Also

covSIR, SIRasymp

Examples

X <- matrix(rnorm(1000), ncol = 5)
eps <- rnorm(200, sd = 0.1)
y <- 2 + 0.5 * X[, 1] + 2 * X[, 3] + eps

SIRboot(X, y, k = 0)
SIRboot(X, y, k = 1)

SIRladle Ladle Estimate for SIR

Description

In the supervised dimension reduction context with response y and explaining variables x, this
functions provides the ladle estimate for the dimension of the central subspace for SIR.

Usage

SIRladle(X, y, h = 10, n.boot = 200,
ncomp = ifelse(ncol(X) > 10, floor(ncol(X)/log(ncol(X))), ncol(X) - 1), ...)

Arguments

X numeric data matrix.

y numeric response vector.

h number of slices in SIR.

n.boot number of bootstrapping samples to be used.

ncomp The number of components among which the ladle estimator is to be searched.
The default here follows the recommendation of Luo and Li 2016.

... arguments passed on to quantile.

Details

The idea here is that the eigenvalues of the SIR-M matrix are of the form λ1 ≥ ... ≥ λk > 0 =
... = 0 and the eigenvectors of the non-zero eigenvalue span the central subspace.

The ladle estimate for k for this purpose combines the values of the scaled eigenvalues and the
variation of the eigenvectors based on bootstrapping. The idea there is that for distinct eigenvales
the variation of the eigenvectors is small and for equal eigenvalues the corresponding eigenvectors
have large variation.

This measure is then computed assuming k=0,..., ncomp and the ladle estimate for k is the value
where the measure takes its minimum.
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Value

A list of class ladle containing:

method the string SIR.

k the estimated value of k.

fn vector giving the measures of variation of the eigenvectors using the bootstrapped
eigenvectors for the different number of components.

phin normalized eigenvalues of the M matrix in the SIR case.

gn the main criterion for the ladle estimate - the sum of fn and phin. k is the value
where gn takes its minimum

lambda the eigenvalues of the M matrix in the SIR case.

W the transformation matrix to supervised components.

S data matrix with the centered supervised components.

MU the location of the data which was substracted before calculating the supervised
components.

data.name the name of the data for which the ladle estimate was computed.

Author(s)

Klaus Nordhausen

References

Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Deter-
mination, Biometrika, 103. 875–887. <doi:10.1093/biomet/asw051>

See Also

ladleplot

Examples

n <- 1000
X <- cbind(rnorm(n), rnorm(n), rnorm(n), rnorm(n), rnorm(n))
eps <- rnorm(n, sd=0.02)
y <- 4*X[,1] + 2*X[,2] + eps

test <- SIRladle(X, y)
test
summary(test)
plot(test)
pairs(cbind(y, components(test)))
ladleplot(test)
ladleplot(test, crit = "fn")
ladleplot(test, crit = "lambda")
ladleplot(test, crit = "phin")
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summary.ladle Summarizing an Object of Class ladle

Description

Summarizes an ladle object

Usage

## S3 method for class 'ladle'
summary(object, ...)

Arguments

object an object of class ladle.

... further arguments to be passed to or from methods.

Author(s)

Klaus Nordhausen

See Also

print.ladle, plot.ladle, ladleplot, FOBIladle, PCAladle, SIRladle

Examples

n <- 1000
X <- cbind(rexp(n), rt(n,5), rnorm(n), rnorm(n), rnorm(n), rnorm(n))

test <- FOBIladle(X)
summary(test)
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